Recall the Solovay-kitaev algorithm:
function Solovay-Kitaev (Gate U, depth n) if $(n==0)$

Return Basic Approximation to u
else
\rightarrow Set $U_{n-1}=$ Solovay_Kitaeo $(U, n-1)$
\rightarrow Set $V, W=G C-D e c o m p o s e\left(U U_{n-1}^{+}\right)$
\rightarrow Set $V_{n-1}=$ Solovay-kitaev $\left(V_{1}, n-1\right)$
\rightarrow Set $W_{n-1}=$ Solovay-Kitaev $(W, n-1)$
\rightarrow Return $U_{n}=V_{n-1} W_{n-1} V_{n-1}^{+} W_{n-1}^{+} U_{n-1}$;
Analysis of runtime:
$l_{n} \equiv$ length of instruction sequence returned by SK-algorithm
$t_{n} \equiv$ corresponding runtime
From the algorithm we read off:

$$
\begin{array}{rlr}
\varepsilon_{n} & =C_{\text {app }} \varepsilon_{n-1}^{3 / 2} \quad \text { (to be proven) } \\
l_{n} & =5 \ln n-\text { (last line) } \\
t_{n} & \leq 3 t_{n-1}+\text { constr } \\
& \begin{aligned}
& \\
& \text { recursive } \\
& \text { calls }
\end{aligned} \quad \text { finding group }
\end{array}
$$ commutator

We compute
(1)

$$
\begin{aligned}
\Sigma_{n} & =c \Sigma_{n-1}^{3 / 2} \\
& =\frac{1}{c^{2}}\left(c^{2} \Sigma_{n-1}\right)^{3 / 2} \\
& =\frac{1}{c^{2}}\left(c^{2} \Sigma_{0}\right)^{\left(\frac{3}{2}\right)^{n}}
\end{aligned}
$$

(21 $\quad l_{n}=O\left(5^{n}\right)$
(3) $t_{n}=O\left(3^{n}\right)$

Inverting (1) gives n in terms of Σ :

$$
\begin{gathered}
\\
\\
\Leftrightarrow \frac{\log \left(\varepsilon_{n} c^{2}\right)=\log \left(c^{2} \varepsilon_{0}\right)\left(\frac{3}{2}\right)^{n}}{\log \left(c^{2} \varepsilon_{0}\right)}=e^{n \log \frac{3}{2}} \\
\Leftrightarrow \quad \log \left[\frac{\log \left(\varepsilon_{n} c^{2}\right)}{\log \left(c^{2} \varepsilon_{0}\right)}\right]=n \log \frac{3}{2} \\
\Leftrightarrow \\
\Leftrightarrow \quad n=\left[\frac{\log \left[\frac{\log \left(\varepsilon c^{2}\right)}{\log \left(\varepsilon_{0} c^{2}\right)}\right]}{\log \frac{3}{2}}\right]
\end{gathered}
$$

Inserting back into (2) and (3) gives:

$$
\ell_{\varepsilon}=\exp \left(\log 5 \frac{\log \left(\frac{\log \left(c^{2} \Sigma\right)}{\log \left(\varepsilon_{0} c^{2}\right)}\right)}{\log 3 / 2}\right)
$$

$$
\begin{aligned}
& =\left(\frac{\log \left(c^{2} \varepsilon\right)}{\log \left(c^{2} \varepsilon_{0}\right)}\right)^{\log 5} \log \frac{3}{2} \\
& =O\left(\log \left(\frac{1}{\varepsilon}\right)^{\log 5 / \log \left(\frac{3}{2}\right)}\right)=O\left(\log \left(\frac{1}{\varepsilon}\right)^{3.97}\right) \\
t_{\varepsilon} & =O\left(\log \left(\frac{1}{\varepsilon}\right)^{\log 3 / \log \left(\frac{3}{2}\right)}\right)=O\left(\log \left(\frac{1}{\varepsilon}\right)^{2.71}\right)
\end{aligned}
$$

\rightarrow runtime and sequence length scale polylogarithmically with accuracy

Proof of details:
Step 1) : Balanced commutators in su(2)
Suppose $U \in S U(2)$ satisfies $d(I, U)<\varepsilon$
goal: find V and W with
$V W V^{\dagger} W^{\dagger}=U$ and

$$
d(I, V), d(I, W)<c_{g c} \sqrt{\varepsilon}
$$

To find V and W, we examine a special case:

$$
V \equiv e^{-1 \phi x / 2}=\left(\begin{array}{lr}
\cos \frac{\phi}{2} & -i \sin \frac{\phi}{2} \\
-i \sin \frac{\phi}{2} & \cos \frac{\phi}{2}
\end{array}\right) \begin{aligned}
& \text { rotation angle } \phi \\
& \text { by } \\
& \text { about } \hat{x} \text {-axis }
\end{aligned}
$$

$$
W \equiv e^{-i \phi y / 2}=\left(\begin{array}{cr}
\cos \frac{\phi}{2} & -\sin \phi \\
\sin \frac{\phi}{2} & \cos \frac{\phi}{2}
\end{array}\right) \begin{aligned}
& \text { rotation } \text { able } \text { aby } \hat{y} \text {-axis }
\end{aligned}
$$

Then the resulting group commutator is a rotation about some axis \hat{n}, by angle θ :

$$
\begin{equation*}
\sin (\theta / 2)=2 \sin ^{2}(\phi / 2) \sqrt{1-\sin ^{4}(\phi / 2)} \tag{*}
\end{equation*}
$$

(exercise)
Now suppose that U is a rotation by arbitrary angle θ about arbitrary axis \hat{p} solve ϕ in terms of θ using (*)

$$
\rightarrow u=S\left(V W V^{+} w^{t}\right) S
$$

where conjugation by S rotates \hat{n}-axis ceto \hat{p}-axis

$$
\rightarrow u=\widetilde{V} \widetilde{W} \widetilde{V}^{t} \tilde{W}^{\dagger}
$$

where $\widetilde{V} \equiv S V S^{\dagger}, \quad \widetilde{W} \equiv S W S^{\dagger}$
For a unitary rotation T by an angle τ, we have $d(I, T)=2 \sin (\tau / 4)=\frac{\tau}{2}+O\left(\tau^{3}\right)$ For U close to the identity, we get from (*):

$$
\begin{aligned}
& d(I, U) \approx 2 d(I, V)^{2}=2 d(I, W)^{2} \\
\rightarrow & u=V W V^{+} W^{\dagger}, \quad d(I, V)=d(I, W) \approx \sqrt{\frac{d([, W)}{2}}<\sqrt{\frac{\Sigma}{2}} \\
\rightarrow & c_{g c} \approx \frac{1}{\sqrt{2}}
\end{aligned}
$$

Step 2): approximating a commutator
Lemma 1:
Suppose V, W, \widetilde{V}, and \widetilde{W} are unitaries such that $d(V, \widetilde{V}), d(W, \widetilde{W})<\Delta$, and also $d(I, V), d(I, W)<\delta$. Then:

$$
d\left(V W V^{\dagger} W^{\dagger}, \widetilde{V} \widetilde{W} \widetilde{V}^{\dagger} \widetilde{W}^{\dagger}\right)<8 \Delta \delta+4 \Delta \delta^{2}+8 \Delta^{2}+4 \Delta^{3}+\Delta^{4}
$$

replacing Δ by E_{n-1}, and δ by $c_{g c} \sqrt{\sum_{n-1}}$ gives:

$$
d\left(V W V^{\dagger} W^{\dagger}, \widetilde{V} \widetilde{W} \widetilde{V}^{\dagger} \widetilde{W}^{\dagger}\right)<c_{a p p r} \sum_{n-1}^{3 / 2}
$$

where $C_{\text {app. }} \approx \& C_{g c}$.
Proof of Lemma 1:
We begin by writing

$$
\nabla=V+\Delta_{v}, \quad \widetilde{W}=W+\Delta_{w}
$$

which gives

$$
\begin{aligned}
& \widetilde{V} \widetilde{W} \widetilde{V}^{\dagger} \widetilde{W}^{\dagger}=V W V^{\dagger} W^{\dagger}+\Delta_{V} W V^{\dagger} W^{\dagger}+V \Delta_{w} V^{\dagger} W^{\dagger} \\
&+V W \Delta_{v}^{\dagger} W^{\dagger}+V W V^{\dagger} \Delta_{w}^{\dagger} \\
&+O\left(\Delta^{2}\right)+O\left(\Delta^{3}\right)+O\left(\Delta^{4}\right) \\
& \Rightarrow d\left(V W V^{\dagger} W^{\dagger} \widetilde{V} \widetilde{W} \widetilde{V}^{+} \widetilde{W}^{\dagger}\right) \\
&<\left\|\Delta_{V} W V^{\dagger} W+V \Delta_{w} V^{\dagger} W^{\dagger}+V W \Delta_{v}^{+} W^{\dagger}+V W V^{\dagger} \Delta_{w}^{+}\right\|
\end{aligned}
$$

$$
\begin{equation*}
+6 \Delta^{2}+4 \Delta^{3}+\Delta^{4} \tag{x-x}
\end{equation*}
$$

$\left(\begin{array}{l}11 \\ 4 \\ 2\end{array}\right) \quad\left(\begin{array}{l}11 \\ 4 \\ 3\end{array}\right)$
Expanding $W=I+\delta_{w}$ gives

$$
\begin{aligned}
& \Delta_{V} W V^{\dagger} W^{\dagger}+V W \Delta_{v}^{\dagger} W^{\dagger}=\Delta_{V} V^{\dagger}+V \Delta_{v}^{\dagger}+O(\Delta \delta)+O\left(\Delta \delta^{2}\right) \\
& \Rightarrow\left\|\Delta_{V} W V^{\dagger} W^{\dagger}+V W \Delta_{V}^{\dagger} W^{\dagger}\right\|<\left\|\Delta_{v} V^{\dagger}+V \Delta_{v}^{\dagger}\right\|+4 \Delta \delta+2 \Delta \delta^{2}
\end{aligned}
$$

Moreover, unitarity of V and $V+\Delta_{v}$ gives

$$
\begin{aligned}
& \Delta_{v} V^{\dagger}+V \Delta_{v}^{+}=-\Delta_{v} \Delta_{v}^{+} \\
& {\left[I=\left(V+\Delta_{v}\right)^{\dagger}\left(V+\Delta_{v}\right)\right.} \\
&=\left(V^{+}+\Delta_{v}^{+}\right)\left(V+\Delta_{v}\right)=I+V^{+} \Delta_{v}+\Delta_{v}^{+} V+\Delta_{v}^{+} \Delta_{v} \\
& L \Delta_{v} V^{\dagger}+V \Delta_{v}^{\dagger}=-\Delta_{v} \Delta_{v}^{+} \\
& \Rightarrow \| \\
& \Delta_{v} W V^{\dagger} W^{+}+V W \Delta_{v}^{+} W^{+} \|<\Delta^{2}+4 \Delta \delta+2 \Delta \delta^{2}
\end{aligned}
$$

Similarly

$$
\left\|V \Delta_{W} V^{\dagger} W^{\dagger}+V W V^{\dagger} \Delta_{w}^{\dagger}\right\|<\Delta^{2}+4 \Delta \delta+2 \Delta \delta^{2}
$$

Combining with $(* *)$ and using the triangle identity gives the result

Next, we want to show that $\{H, T\}$ is an instruction set for SU (2)
To this end define for $\hat{n}=\left(u_{x}, n_{y}, n_{z}\right)$ and $\theta \in \mathbb{R}$:

$$
\begin{aligned}
R_{\hat{n}}(\theta) & \equiv \exp (-i \theta \hat{n} \cdot \vec{\sigma} / 2) \\
& =\cos \left(\frac{\theta}{2}\right) I-i \sin \left(\frac{\theta}{2}\right)\left(n_{x} x+n_{y} y+n_{z} z\right)
\end{aligned}
$$

\rightarrow is rotation by angle θ about
Proof:
\hat{n}-axis of Bloch-sphere
Consider now the gates T and HTH
$\rightarrow T$ is (up to phase) rotation by $\frac{\pi}{4}$ about \vec{z}-axis HTH is rotation by $\frac{\pi}{4}$ about \hat{x}-axis (exercise)

$$
\begin{aligned}
& \rightarrow \exp \left(-i \frac{\pi}{8} Z\right) \exp \left(-i \frac{\pi}{8} X\right) \\
& =\left[\cos \frac{\pi}{8} I-i \sin \frac{\pi}{8} Z\right]\left[\cos \frac{\pi}{8} I-i \sin \frac{\pi}{8} X\right] \\
& =\cos ^{2} \frac{\pi}{8} I-i\left[\cos \frac{\pi}{8}(x+z)+\sin \frac{\pi}{8} Y\right] \sin \frac{\pi}{8}
\end{aligned}
$$

\rightarrow rotation about axis $\vec{n}=\left(\cos \frac{\pi}{8}, \sin \frac{\pi}{8}, \cos \frac{\pi}{8}\right)$ by angle $\cos \left(\frac{\theta}{2}\right) \equiv \cos ^{2} \frac{\pi}{8}$

Can show θ is irrational multiple of 2π Define $\theta_{k}=(K \theta) \bmod 2 \pi \in[0,2 \pi)$
For $\delta>0$ set $N=\left\lceil\frac{2 \pi}{\delta}\right\rceil \in \mathbb{N}$
Then $\exists j \neq k \in\{1, \cdots, N\}:\left|\theta_{j}-\theta_{k}\right| \leq \frac{2 \pi}{N}<\delta$

$$
\Rightarrow\left|\theta_{k-j}\right|<\delta
$$

\rightarrow sequence $\theta_{l(k-j)}$ fills up interval $[0,2 \pi)$ as l is varied
It follows that for any $\Sigma>0$ and any $\alpha \in[0,2 \pi)$ $\exists \quad n \in \mathbb{N}$ such that

$$
d\left(R_{n}(\alpha), R_{n}(\theta)^{n}\right)<\frac{\varepsilon}{3}
$$

(follows from $d\left(R_{n}(\alpha), R_{n}(\alpha+\beta)\right)=\left|1-e^{i \beta / 2}\right|$)
Moreover, we have

$$
\begin{aligned}
& H R_{\hat{n}}(\alpha) H=R_{n}(\alpha), \hat{m}=\left(\cos \frac{\pi}{8},-\sin \frac{\pi}{8}, \cos \frac{\pi}{8}\right) \\
\rightarrow \quad & d\left(R_{n}(\alpha), R_{n}(\theta)^{n}\right)<\frac{\sum}{3}
\end{aligned}
$$

Since any unitary U can be represented as

$$
u=R_{n}(\beta) R_{n}(\gamma) R_{\hat{n}}(\delta) \quad \text { (exercise) }
$$

we get $d\left(u, R_{n}(\theta)^{n_{1}} H R_{n}(\theta)^{n_{2}} H R_{n}(\theta)^{n_{3}}\right)<\Sigma$

